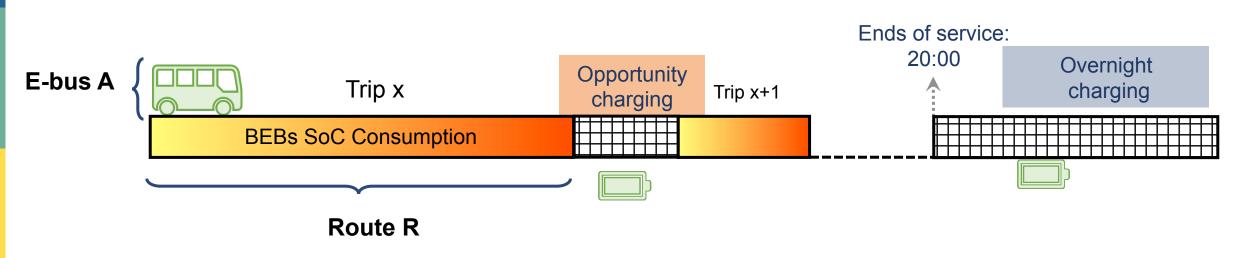
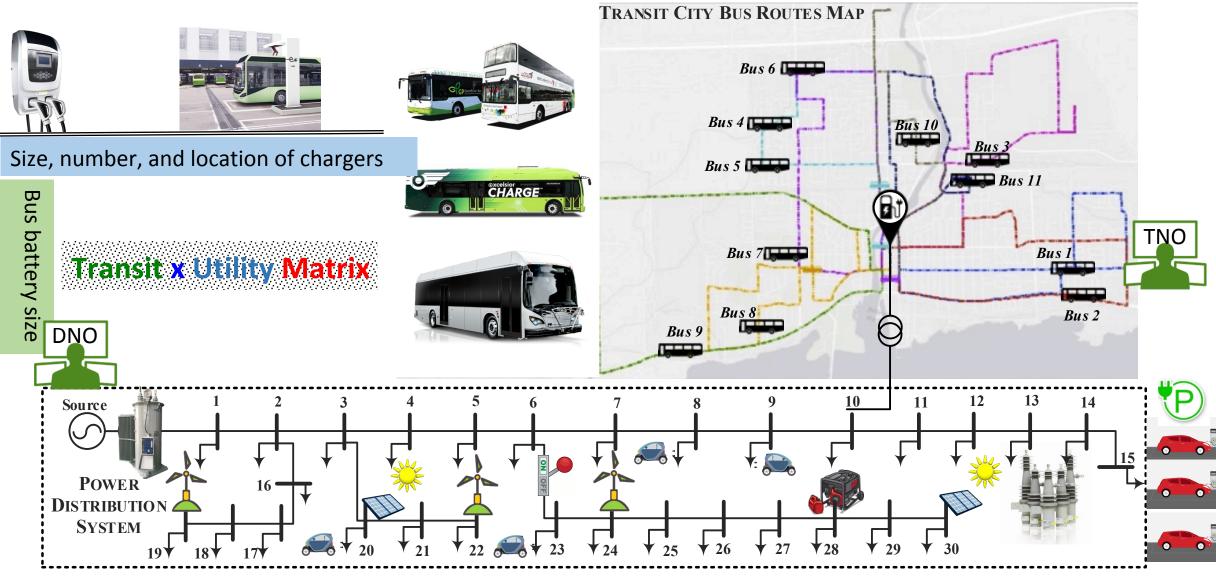

Impacts of Adopting Full Battery-Based Electric Transit Bus Systems on Ontario Electricity Grid

Electric School Bus Electric City Bus Electric Coach Bus GreenPower Single Decker 40-45 ft: 320 kWh GreenPower 36.5 ft: 100-200 kWh GreenPower Double Decker 45ft: 480 kWh ©xcelsior CHARGE 360 NewFlyer 40ft: 150-480 kWh NewFlyer 60ft: 250-600 kWh **BYD Single Decker** Lion Bus C: 88-220 kWh **BYD** Double Decker 45ft: 420 kWh 45ft: 496 kWh BATTEFIY ELECTRIC Proterra 40 ft: 90-880 kWh LIONA Lion Bus A 26ft (mini school bus): Alexander Dennis Inc. Double Decker 80-160 kWh BYD 60 ft: 591 kWh BYD 40 ft: 324 kWh 45ft: customized-kWh

Impacts of Adopting Full Battery-Based Electric Transit Bus Systems on Ontario Electricity Grid

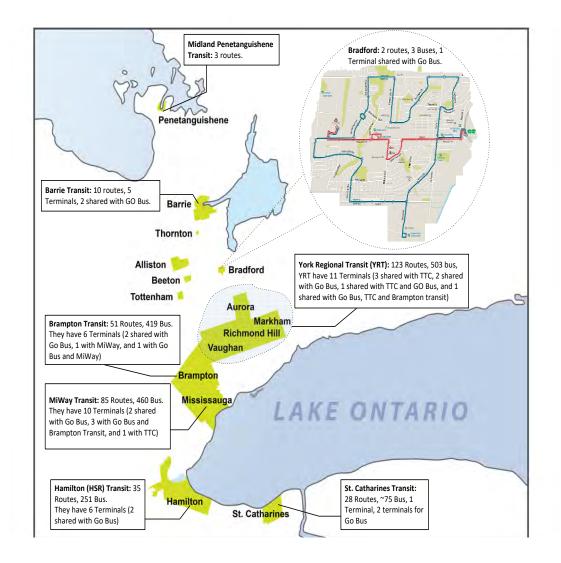

✓ Fixed routes

- Predefined schedules
- Shared infrastructure

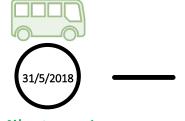


Battery Capacity (i.e. mileage range)

Charger Power (i.e. charging refueling rate)



Technical specifications	Overnight charging	Opportunity Charging				
Shape of charger						
Key features	 Smart charging Small infrastructure footprint of the depot charge box Flexible design for roof and floor mounting CCS and OCPP compliant Remote diagnostics and management tools 	 Charge in 3 to 6 minutes One charger can serve multiple vehicle types and brands Safe and reliable fully automated connection Based on international IEC 61851-23 standard Remote diagnostics and management tools 				
Power	Modular: 50 kW, 100 kW, 150 kW	Modular: 150 kW, 300 kW, 450 kW, 600 kW				
Input AC connection	3P + PE	3P + PE				
Rated input current and power	3 x 250 A, 173 kVA (per 150 kW module)	3 x 250 A, 173 kVA (per 150 kW module)				
Input voltage range	400 VAC +/- 10 % (50 Hz or 60 Hz)	400 VAC +/- 10 % (50 Hz or 60 Hz)				
Maximum output current	200 A (per 150 kW module)	250 A (per 150 kW module)				
Output voltage range	150 – 920 VDC	150 – 850 VDC 150 – 920 VDC (extended voltage range option)				
DC connection standard	IEC 61851-23 / DIN 70121 ISO 15118	IEC 61851-23 / DIN 70121 ISO 15118				
Connection method between charger and bus	CCS 1 or CCS 2	4-pole automatic connection system				
Environment	Indoor / Outdoor	Indoor / Outdoor				
Operating temperature	Standard: -10 °C to +50 °C Optional: -35 °C to +50 °C	-35 °C to +50 °C				
Network connection	GSM / 3G modem 10/100 base-T Ethernet	GSM / 3G modem 10/100 base-T Ethernet				
Protection	Charge cabinet: IP54 – IK10 Depot charge box: IP65 – IK10	IP54 – IK10				



Project Objectives

- Develop modeling, simulation, and optimization tools for electrification of public transit bus systems
- Study the impacts of electrifying transit bus systems on local distribution networks and bulk power grids in Ontario

Progress and Vision for Transit Buses Electrification

Milestone 1

- ✓ Project startup
- Forming team
- Draft contracts
- Kick-off meetings
- Equipment purchase
- Marketing (web page)
- ✓ Survey outline
- State-of-the-art

31/7/2018

Milestone 2

✓ Literature survey

- Electrification Technology
 Electric City Bus (ECB)
 Electric School Bus (ESB)
- ✓ Data collection Stage I

• ECBs and ESBs technical, economical and charging infrastructure data.

 Transit bus network data within Alectra Inc. coverage area (i.e., buses, trips, routes, recovery time, etc.)

- ✓ Data collection- Stage II
- Alectra Utility Inc.: substations, distribution feeders, and demand profiles for the candidate locations of charging stations.
- ✓ Develop EB energy consumption model
- Review and formulation
- Simulation and validation
- ✓ Study the annual energy demand and operation feasibility of EB fleets
- Complete opportunity-Based ECB Scenario
- Complete overnight-Based ECB Scenario

- ✓ Study the impact of overnight and opportunity EBs on power grids
- Analyze EB fleets load characteristics:
- Calculating load metrics
- Correlation with typical demand profile in each city/zone of Alectra
- Correlation with wind and solar
- ✤ Deriving aggregated load profile
- Mapping aggregated load profile to the nearest zone in ON transmission system

Data collection- Stage III

- IESO: transmission and/or sub-transmission zones connected to Alectra Inc. distribution networks
- Perform System Impact Assessment (SIA) studies

- Develop a transit-utility toolbox for optimal design and operation of EB fleets
- Graphical user interface for data input/ output
- Formulate mathematical models: for optimal design and operation of EB fleets
- Software license procurement
- Coding and validation

Milestone 2-Transit Data Collection

	А	В	C	D	E	F	G H I J K L					
1	City	Mississauga	utemaps	, https://rideschedu	les.com/schedule.html?102343, https://cp	<u>tr"</u>						
2	Number of buses	460					Route number and name					
3	Number of routes	85	Block	Route number	Route name I	ы. —						
4	Terminal	Code	1	1, 1C	1 Dundas (Eastbound)		Number of buses servicing route					
5	West of Ridgeway Dr	1	2	1, 1C	1 Dundas (Eastbound)	_						
6	Islington Subway Bus Terminal	2	3	1, 1C	1 Dundas (Eastbound)		Ctart point and and point					
7	CITY CENTRE TRANSIT TERMINAL	3	4	1, 1C	1 Dundas (Westbound)		Start point and end point					
8	GLENGARRY RD at DUNDAS ST	4	5	1, 1C	1 Dundas (Westbound)							
9	SHERWAY GARDENS BUS TERMINAL	5	6	1, 1C	1 Dundas (Westbound)		Operating time schedule days (Mon-Fri, Sat., and Sun.)					
10	LONG BRANCH GO STATION	6	7	3	3 Bloor (Eastbound)							
11	LORIMAR DR at CARDIFF BLVD	7	8	3	3 Bloor (Eastbound)		Trip cycle time					
12	DUNDAS ST west of ERINDALE STATION RD	8	9	3	3 Bloor (Eastbound)	-						
13	WESTWOOD SQUARE BUS TERMINAL	9	10	3	3 Bloor (Westbound)							
14	PORT CREDIT GO STATION	10	11	3	3 Bloor (Westbound)		Trip frequency (i.e., arrives/leaves every X mins)					
15	ERIN CENTRE BLVD at LONGFORD DR	11	12	3	3 Bloor (Westbound)							
16	MEADOWVALE TOWN CENTRE	12	13	4	4 Sherway Gardens (Eastbound)		Recovery time (i.e., time for opportunity charging)					
17	REXDALE BLVD at ISLINGTON AVE	13	14	4	4 Sherway Gardens (Eastbound)							
18	CLARKSON GO STATION	14	15	4	4 Sherway Gardens (Eastbound)		Number of complete trips per day					
19	CARDIFF BLVD east of TOMKEN RD	15	16	4	4 Sherway Gardens (Westbound)		Number of complete trips per day					
20	TRILLIUM HOSPITAL BUS TERMINAL	16	17	4	4 Sherway Gardens (Westbound)		No selection Constitution and all					
21	HURONTARIO & 407 PARK and RIDE	17	18	4	4 Sherway Gardens (Westbound)		Number of partial trips per day					
22	ERINDALE GO STATION	18	19	5	5 Dixie (Northbound)							
23	COMMERCE BLVD at RENFORTH STATION	19	20	5	5 Dixie (Northbound)		Number of stops					
24	HUMBER COLLEGE BLVD at ETOBICOKE HOSPITAL	20	21	5	5 Dixie (Northbound)		•					
25	SHERIDAN CENTRE BUS TERMINAL	21	22	5	5 Dixie (Southbound)	- 🗆	Route distance (km)					
26	MATHESON BLVD east of HURONTARIO ST	22	23	5	5 Dixie (Southbound)		Noule distance (kin)					
27	SOUTH COMMON CENTRE BUS TERMINAL	23	24	5	5 Dixie (Southbound)	_						
28	ERIN MILLS STATION WEST	24	25	6	6 Credit Woodlands (Eastbound)		Daily travelled distance					
29	WOODBINE CENTRE BUS TERMINAL	25	26	6	6 Credit Woodlands (Eastbound)							
30	TRELAWNY CIR at MOCKINGBIRD LANES	26	27	6	6 Credit Woodlands (Eastbound)							
31	LISGAR GO STATION	27	28	6	6 Credit Woodlands (Westbound)							
4	Terms definition Midland and Penetanguish	ene Barrie	Bradford	Brampton Hami	ton St. Catharines YRT Mississauga	+	: 4					

Milestone 3–Energy Consumption Analysis

Milestone 1

- ✓ Project startup
- Forming team
- Draft contracts
- Kick-off meetings
- Equipment purchase
- Marketing (web page)
- ✓ Survey outline
- State-of-the-art

- (31/7/2018) Milestone 2

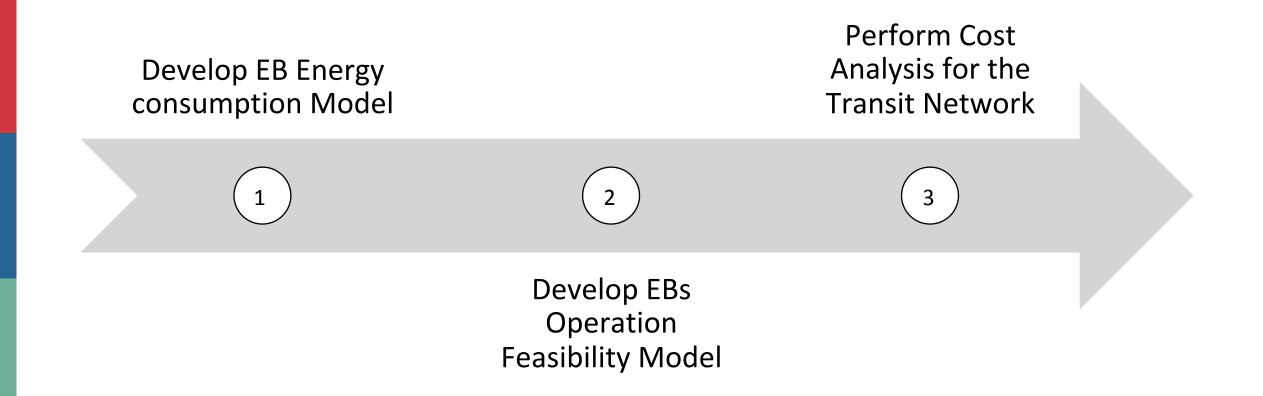
✓ Literature survey

- Electrification Technology
 Electric City Bus (ECB)
 Electric School Bus (ESB)
- ✓ Data collection Stage I

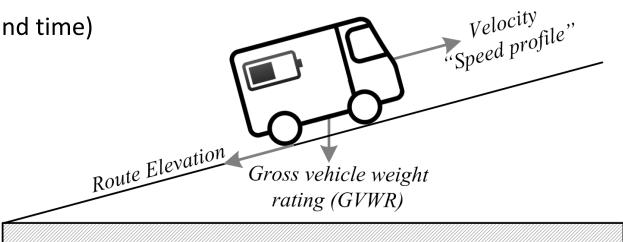
• ECBs and ESBs technical, economical and charging infrastructure data.

 Transit bus network data within Alectra Inc. coverage area (i.e., buses, trips, routes, recovery time, etc.)

- ✓ Data collection- Stage II
- Alectra Utility Inc.: substations, distribution feeders, and demand profiles for the candidate locations of charging stations.
- ✓ Develop EB energy consumption model
- Review and formulation
- Simulation and validation
- ✓ Study the annual energy demand and operation feasibility of EB fleets
- Complete opportunity-Based ECB Scenario
- Complete overnight-Based ECB Scenario

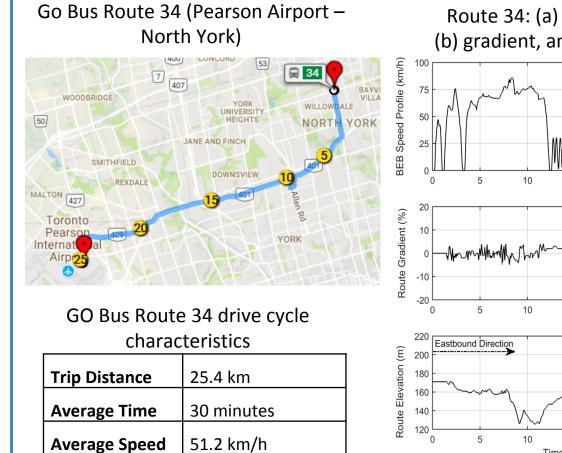


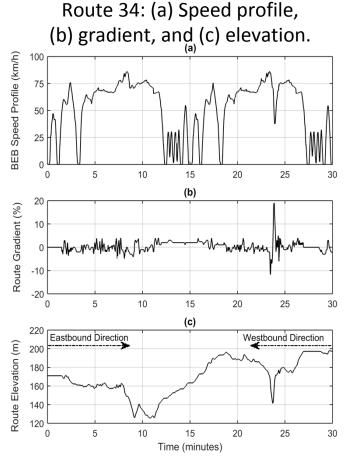
- ✓ Study the impact of overnight and opportunity EBs on power grids
- Analyze EB fleets load characteristics:
 Calculating load metrics
- Correlation with typical demand profile in each city/zone of Alectra
- Correlation with wind and solar
- Deriving aggregated load profile
- Mapping aggregated load profile to the nearest zone in ON transmission system
- Data collection- Stage III
- IESO: transmission and/or sub-transmission zones connected to Alectra Inc. distribution networks
- Perform System Impact Assessment (SIA) studies


- Develop a transit-utility toolbox for optimal design and operation of EB fleets
- Graphical user interface for data input/ output
- Formulate mathematical models: for optimal design and operation of EB fleets
- Software license procurement
- Coding and validation


Planning Process of Electrified transit system

□ Factors Impact EB Energy Consumption

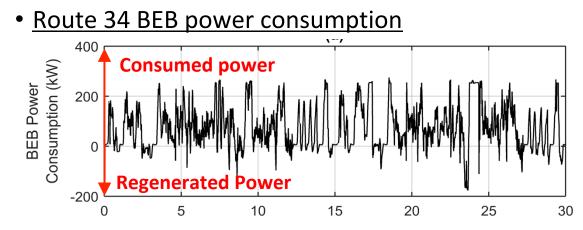

- Speed profile (implicitly includes the trip distance and time)
- Level of traffic (service)
- City bus versus intercity bus operation service.
- Route gradient and elevation
- Gross vehicle weight rating (GVWR)
- Auxiliary loads (light, sound, and radio system)
- Heat, ventilation, and air conditioning (HVAC)



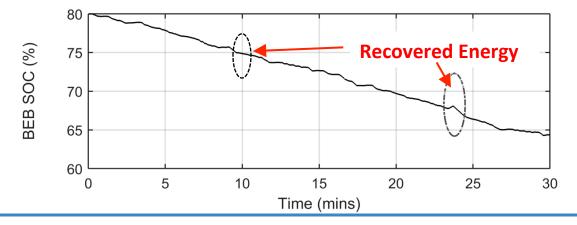
Energy Consumption for Go Bus Route 34 (Pearson Airport – North York) using ADVISOR

Route Inputs to ADVISOR Consumption Model

BEB Inputs to the Consumption Model



Alexander Dennis Electric Coach Prototype Data


Gross vehicle weight rating (GVWR)	33400 kg
Electric motor rating	283 kW
HVAC load (as a constant load)	30 kW
Auxiliary load	9 kW

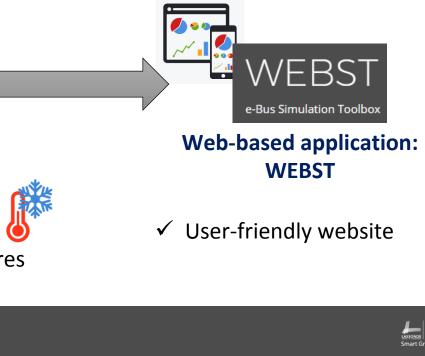
Energy Consumption for Go Bus Route 34 (Pearson Airport – North York)

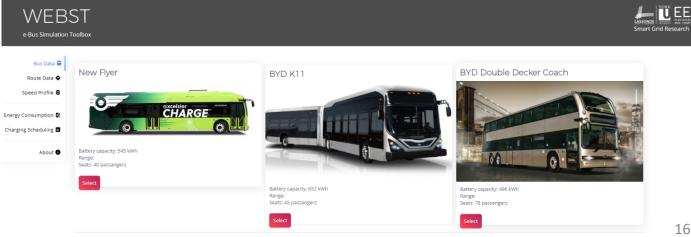
Model Outputs from the Energy Consumption Model

<u>Route 34 BEB state of charge</u>

Route 34 Energy Consumption								
Eastbound total consumption	66.05 kWh							
Eastbound average consumption	2.6 kWh/km							
Westbound total consumption	62.74 kWh							
Westbound average consumption	2.47 kWh/km							

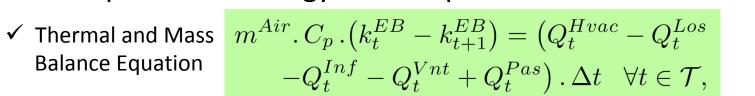
Eastbound direction has a 5.26% higher consumption rate due to its uphill elevation.

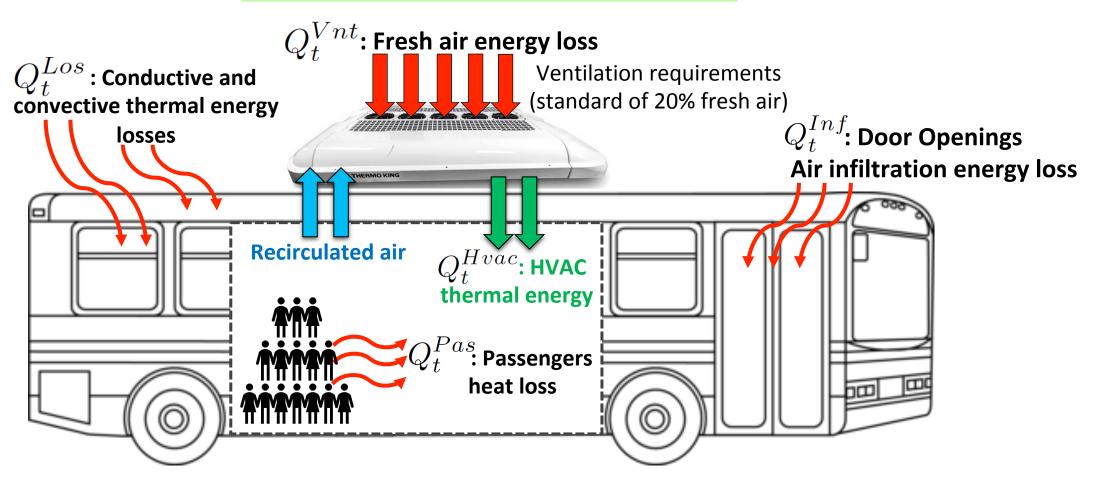

In-house toolbox using:


MATLAB and EXCEL

Off-the-shelf toolbox: ADVISOR

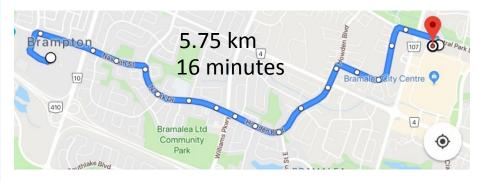
- Not developed for transit electrification.
- Not a user-friendly toolbox i.e., requires MATLAB knowledge and license to upload your own data and installation license.
- Does not include a model for the HVAC consumption.

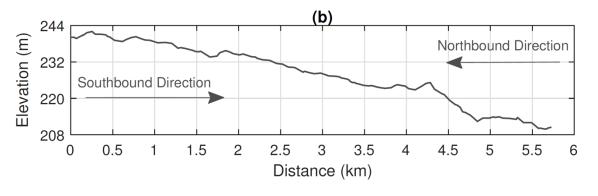

✓ Includes the HVAC model besides the ADVISOR Features



Developed HVAC Energy Consumption Model

Balance Equation





Energy Consumption for Brampton transit Route 17 using the developed in-house model model Route Inputs to ADVISOR Consumption Model

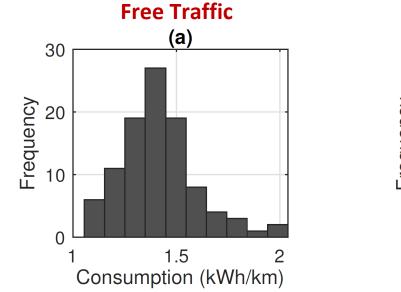
 Brampton Transit Route 17 (Trinity Common Terminal – Bramalea Terminal)

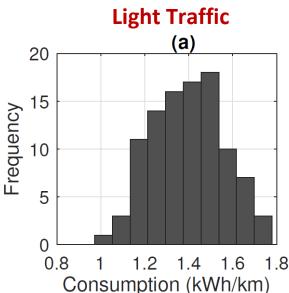
• Brampton Transit Route 17 elevation

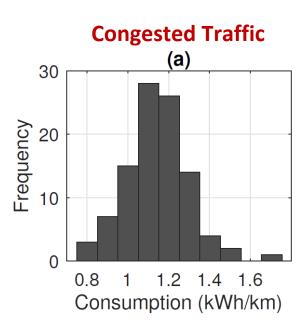
• Sample of studied Speed profiles: (a) Free traffic, (b) Light traffic, and (c) Congested traffic (a) Velocity (km/hr) 10 11 12 13 14 15 161 (b) Velocity (km/hr) 10 11 12 13 14 15 16 17 18 (c) Velocity (km/hr) 10 12 14 16 18 20 22 24 26 28 30 32 Time (min)

Energy Consumption for Brampton transit Route 17 using the developed in-house model BEB inputs to the Consumption Model HVAC Model Outputs

BYD 40ft Battery Electric Bus

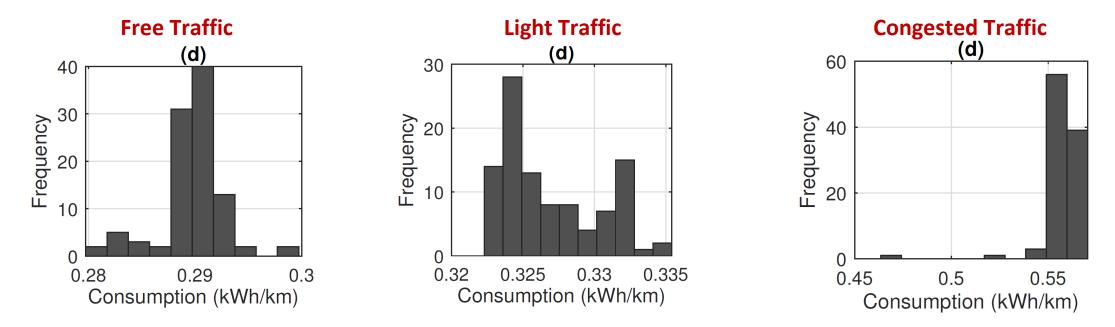

Gross vehicle weight rating (GVWR)	19700 kg
Electric motor rating	300 kW
HVAC load (controlled operation)	15 kW
Auxiliary load	9 kW


IVAC IVIODEI Outputs	
 HVAC operation using the previous Light traffic speed profile. 	
	Temperature Comfort Range
	On/off Operation to Control temperature
	Infiltration energy loss during door openings


Energy Consumption for Brampton transit Route 17 using the developed in-house model

> Energy Consumption Analysis for 300 Speed profiles at different traffic conditions

1. <u>Traction Energy Consumption</u>

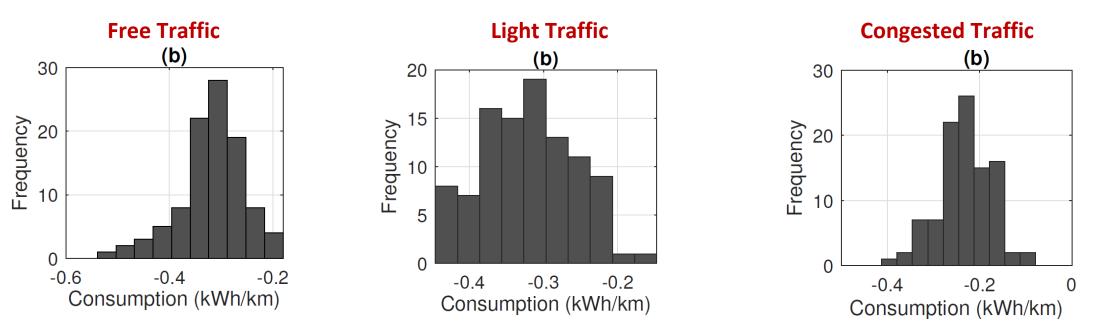


Higher traffic means lower speed and lower speed requires low motive energy, thus low traction consumption

Energy Consumption for Brampton transit Route 17 using the developed in-house model

Energy Consumption Analysis for 300 Speed profiles at different traffic conditions

2. <u>HVAC Energy Consumption</u>

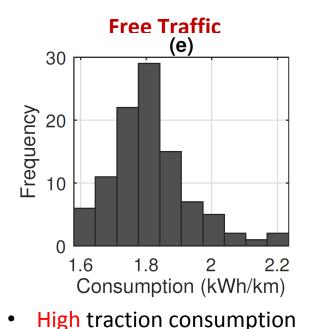


Congested traffic have longer trip times, hence longer HVAC operation and higher consumption.

Energy Consumption for Brampton transit Route 17 using the developed in-house model

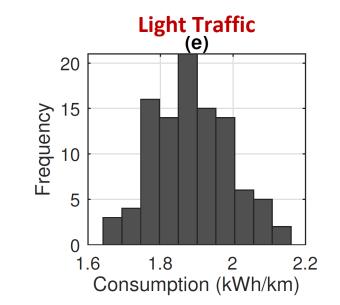
> Energy Consumption Analysis for 300 Speed profiles at different traffic conditions

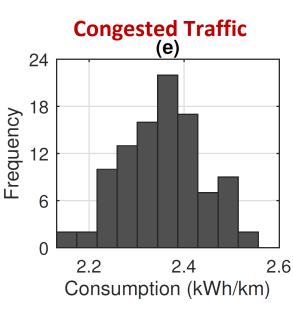
3. <u>Regenerative Energy Consumption</u>



Regenerative energy consumption is slightly affected by the traffic conditions.

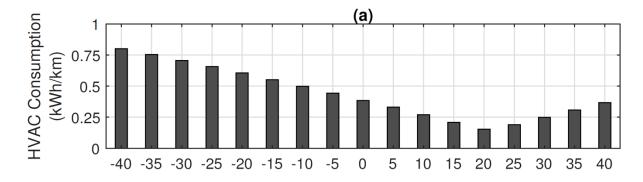
Energy Consumption for Brampton transit Route 17 using the developed in-house model


Energy Consumption Analysis for 300 Speed profiles at different traffic conditions

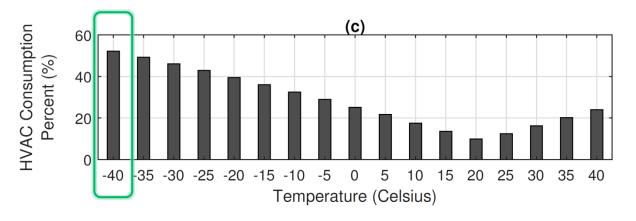

4. <u>Total Energy Consumption (Traction + HVAC + Regenerative)</u>

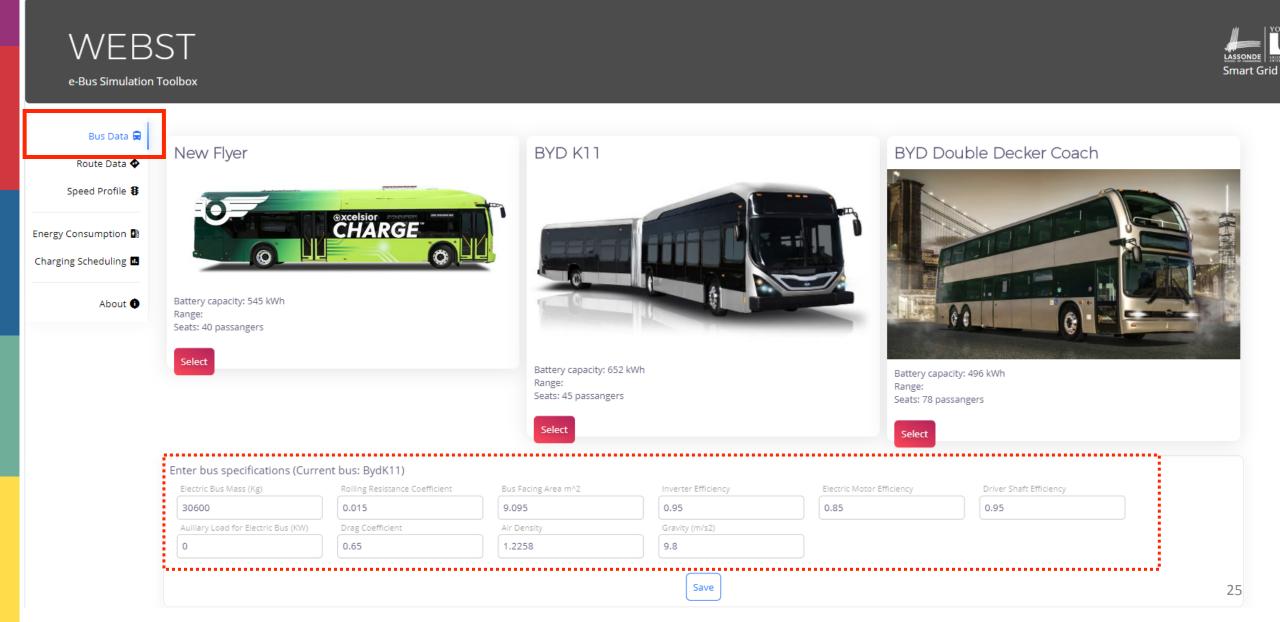
Low HVAC consumption

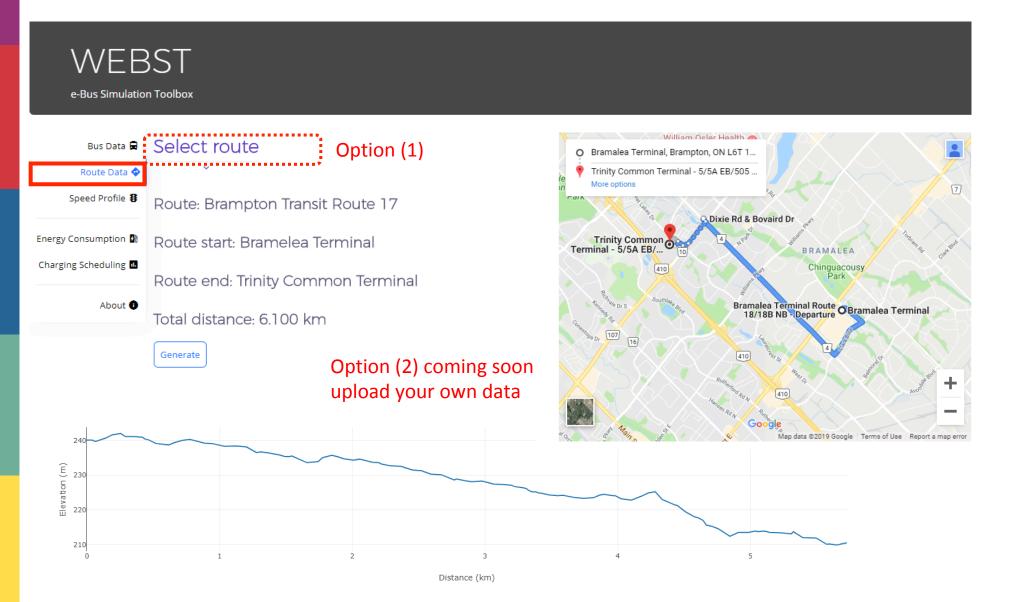
Almost same regenerative energy

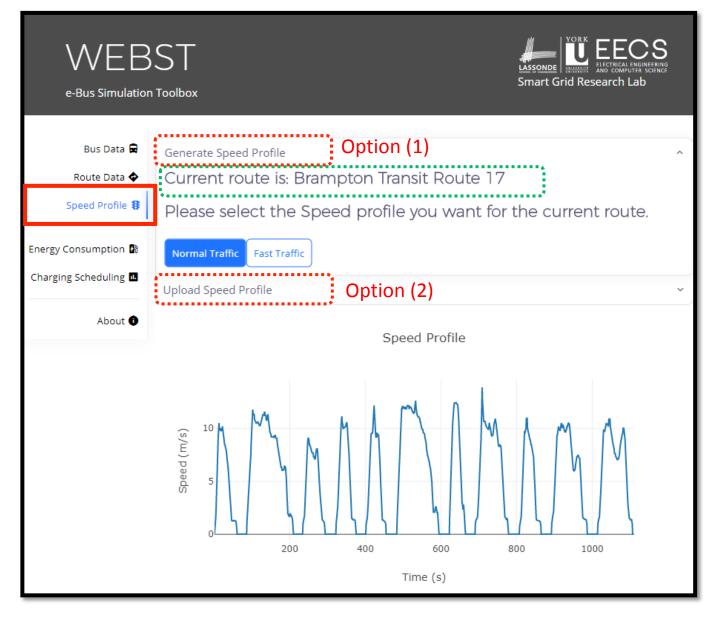


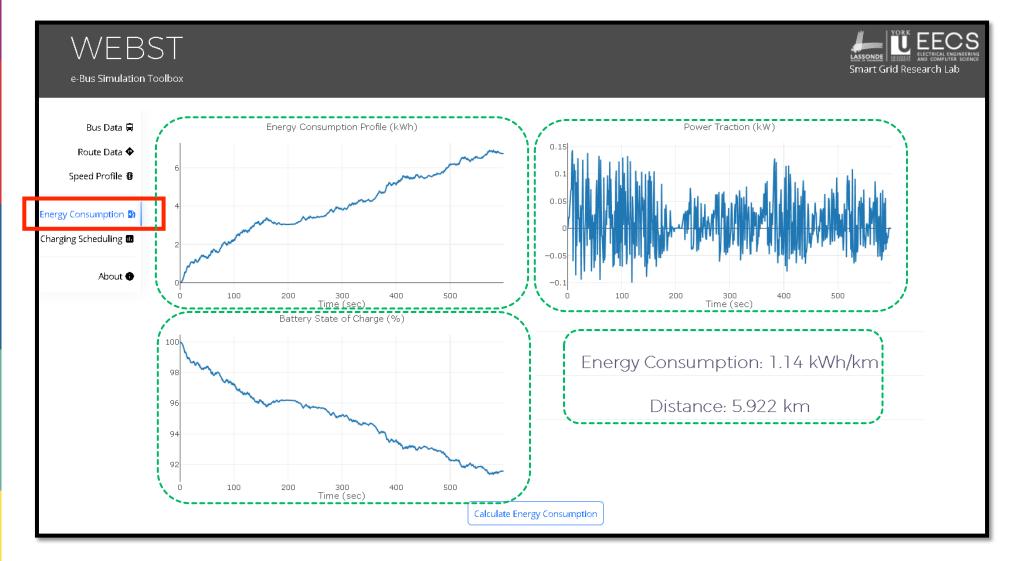
- Low traction (20% lower)
- Almost same regenerative energy
- High HVAC consumption (doubled)


Overall congested traffic have higher consumption rates


- Energy Consumption for Brampton transit Route 17 using the developed in-house model
- HVAC Energy Consumption Analysis at different temperatures.

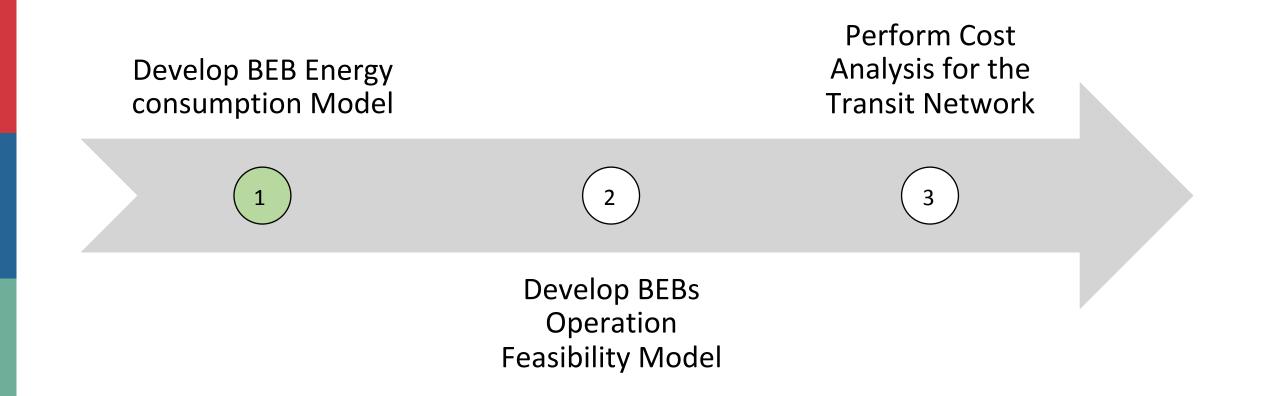

• HVAC consumption at different temperatures



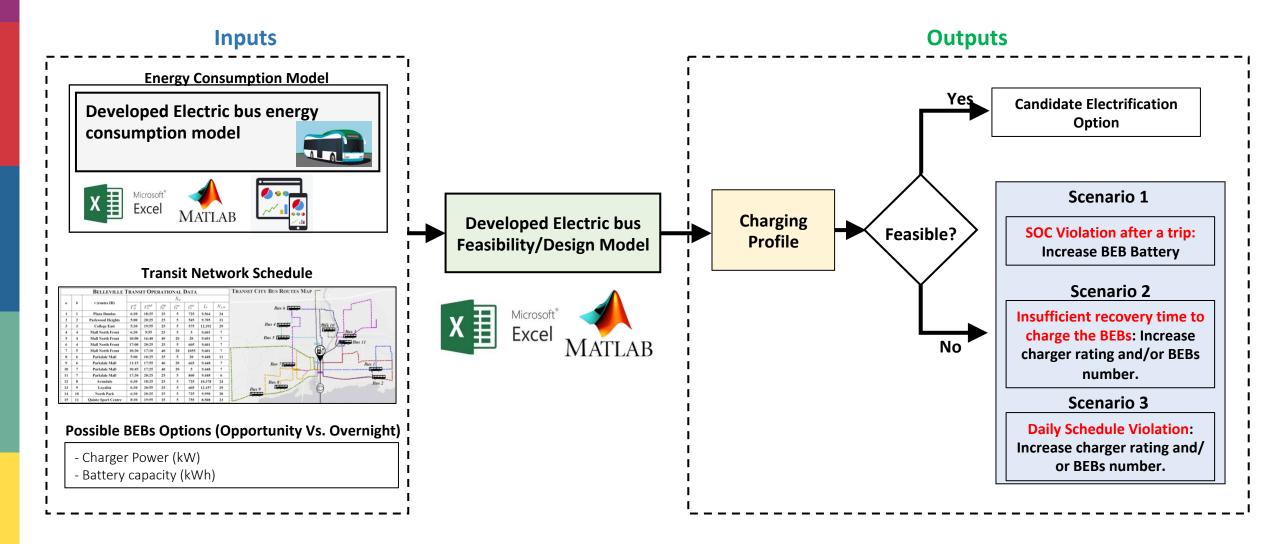

 HVAC percentage of consumption with respect to the total consumption at different temperatures



Estimated Energy Required for E-bus in Ontario

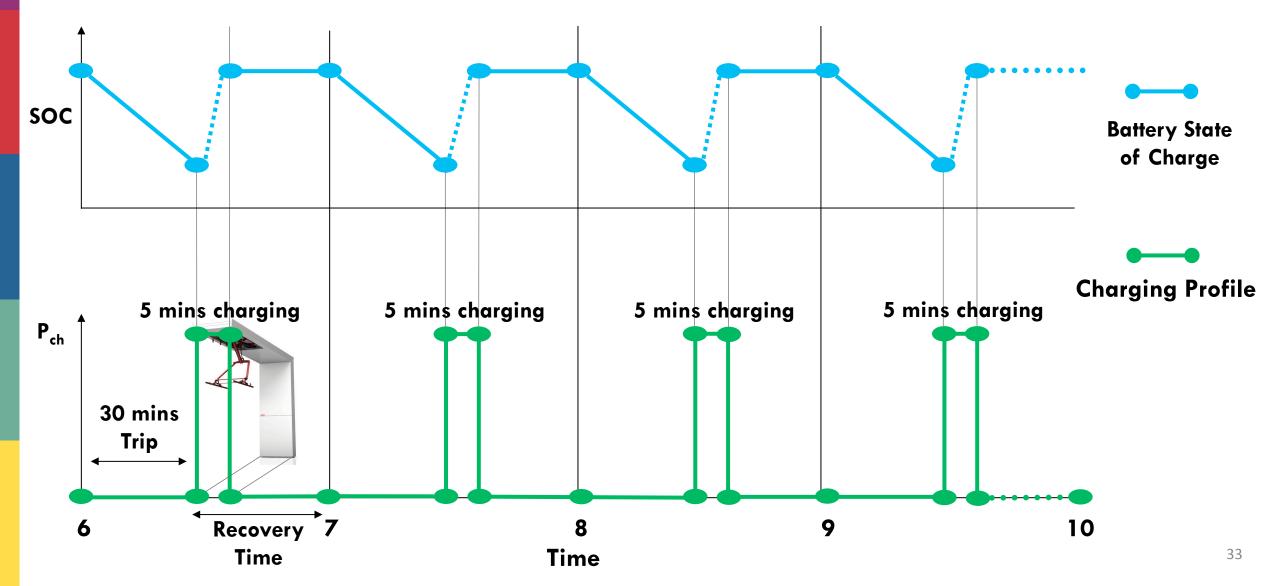

1560	Annu	al Distance (100	0 km)	Total annual	Energy consumption (GWh/year)				
IESO zone	School bus	City bus	Go bus	Distance (10 ⁶ km)	Min ^a	Avg ^b	Max ^c		
West	35.962 19.274		0.000	55.236	55.24	110.47	165.71		
Southwest	48.176	45.039	11.876	105.091	105.09	210.18	315.27		
Bruce	8.017	8.017 0.000		8.017	8.02	16.03	24.05		
Niagra	19.416	8.815	5.938	34.168	34.17	68.34	102.51		
Toronto	59.940	340.326	35.628	435.894	435.89	871.79	1307.68		
Essa	22.579	4.870	0.0	27.449	27.45	54.90	82.35		
East	va 25.562 63.123		0.0	57.121	57.12	114.24	171.36 266.06		
Ottawa			0.0	88.685	88.69	177.37			
Northeast			0.0	36.209	36.21	72.42	108.63		
Northwest	6.715	3.300	0.0	10.015	10.01	20.03	30.04		
Total	300.484*10 ³ km 503.960*10 ³ km		53.442*10 ³ km	857.886*10 ⁶ km	857.89	1715.77	2573.66		

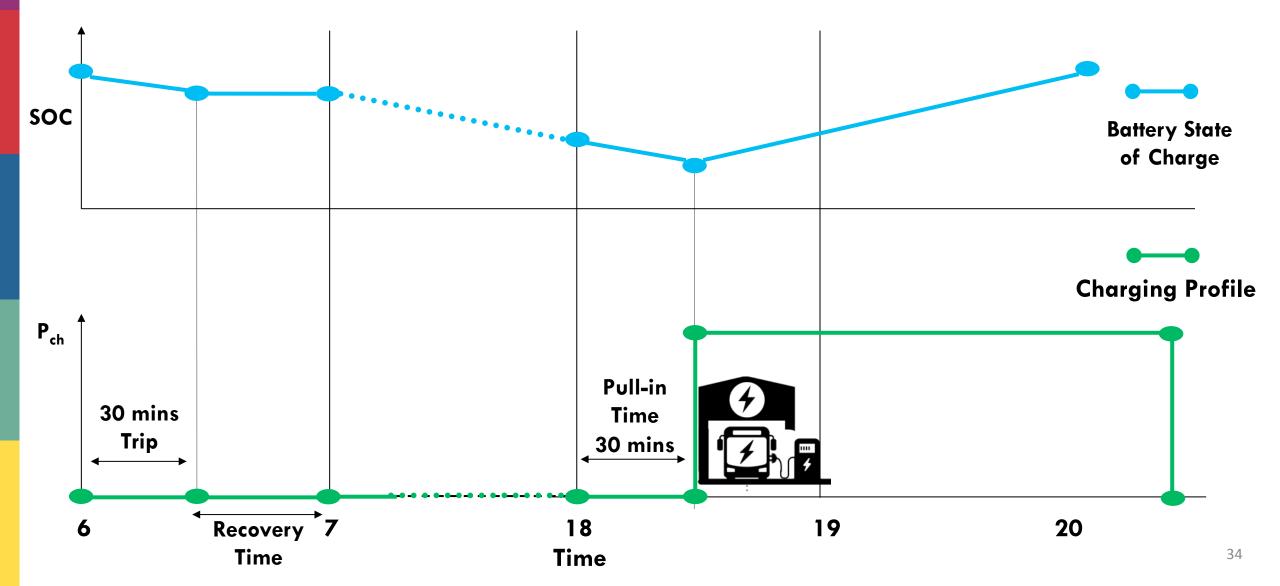
- Electrifying transit buses networks in Ontario (city transit, regional transit (Go Bus), and school bus) will add a significant load/demand burden on the existing electric infrastructure.
- The estimated additional load demand is between a <u>minimum of 900 GWh/year</u> to a <u>maximum</u> <u>of 2500 GWh/year</u>, which depends mainly on the consumption factor of the electric buses. This highlights the importance to investigate the consumption factor of each transit network.
- The additional demand due to electrified city transit, school, and GO buses requires careful/ accurate/optimal design and operation.



Annual aggregated energy consumption for city bus, school bus, and GO bus based on 2 kWh/km consumption rate 29

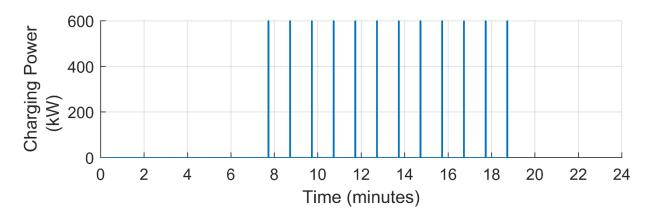
Planning Process of Electrified transit system


Developed Electric bus Feasibility/Design Model

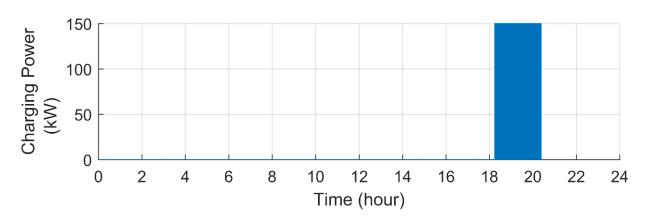

Developed Electric bus Feasibility/Design Model

	А	В	С	D	E	F	G	Н	Ι	J	К	L
1	City	Mississauga	utemaps	, https://rideschedu	les.com/schedule.html?102343, https://d	ptdb.ca/wiki/i	ndex.php/Miss	issauga Trans				
2	Number of buses	460								Operating t	ime schedule	
3	Number of routes	85	Block	Route number	Route name	buses/route	Start point	End point	Day of week	Start time	End time	Trip cycle time (min)
4	Terminal	Code	1	1, 1C	1 Dundas (Eastbound)	6	1	2	1	4:23:00 AM	3:18:00 AM	56
5	West of Ridgeway Dr	1	2	1, 1C	1 Dundas (Eastbound)	6	1	2	2	4:34:00 AM	2:49:00 AM	54 、
6	Islington Subway Bus Terminal	2	3	1, 1C	1 Dundas (Eastbound)	6	1	2	З	6:35:00 AM	2:05:00 AM	54
7	CITY CENTRE TRANSIT TERMINAL	3	4	1, 1C	1 Dundas (Westbound)	6	2	1	1	4:40:00 AM	2:32:00 AM	56
8	GLENGARRY RD at DUNDAS ST	4	5	1, 1C	1 Dundas (Westbound)	6	2	1	2	5:09:00 AM	1:58:00 AM	53
9	SHERWAY GARDENS BUS TERMINAL	5	6	1, 1C	1 Dundas (Westbound)	6	2	1	3	7:16:00 AM	1:14:00 AM	53
10	LONG BRANCH GO STATION	6	7	3	3 Bloor (Eastbound)	6	3	2	1	4:54:00 AM	1:54:00 AM	42
11	LORIMAR DR at CARDIFF BLVD	7	8	3	3 Bloor (Eastbound)	6	3	2	2	5:36:00 AM	1:00:00 AM	40
12	DUNDAS ST west of ERINDALE STATION RD	8	9	3	3 Bloor (Eastbound)	6	3	2	З	7:36:00 AM	10:48:00 PM	39
13	WESTWOOD SQUARE BUS TERMINAL	9	10	3	3 Bloor (Westbound)	6	2	3	1	5:35:00 AM	2:34:00 AM	40
14	PORT CREDIT GO STATION	10	11	3	3 Bloor (Westbound)	6	2	3	2	6:17:00 AM	1:39:00 AM	37
15	ERIN CENTRE BLVD at LONGFORD DR	11	12	3	3 Bloor (Westbound)	6	2	3	3	7:53:00 AM	11:30:00 PM	36
16	MEADOWVALE TOWN CENTRE	12	13	4	4 Sherway Gardens (Eastbound)	З	4	5	1	4:58:00 AM	10:26:00 PM	40
17	REXDALE BLVD at ISLINGTON AVE	13	14	4	4 Sherway Gardens (Eastbound)	З	4	5	2	6:14:00 AM	9:42:00 PM	40
18	CLARKSON GO STATION	14	15	4	4 Sherway Gardens (Eastbound)	З	4	5	З	7:54:00 AM	7:27:00 PM	41
19	CARDIFF BLVD east of TOMKEN RD	15	16	4	4 Sherway Gardens (Westbound)	3	5	4	1	5:38:00 AM	11:12:00 PM	47
20	TRILLIUM HOSPITAL BUS TERMINAL	16	17	4	4 Sherway Gardens (Westbound)	3	5	4	2	6:54:00 AM	10:27:00 PM	44
21	HURONTARIO & 407 PARK and RIDE	17	18	4	4 Sherway Gardens (Westbound)	3	5	4	3	8:40:00 AM	8:13:00 PM	44
22	ERINDALE GO STATION	18	19	5	5 Dixie (Northbound)	5	6	7	1	4:17:00 AM	1:39:00 AM	50
23	COMMERCE BLVD at RENFORTH STATION	19	20	5	5 Dixie (Northbound)	5	6	7	2	4:51:00 AM	12:01:00 AM	47
24	HUMBER COLLEGE BLVD at ETOBICOKE HOSPITAL	20	21	5	5 Dixie (Northbound)	5	6	7	3	7:40:00 AM	8:28:00 PM	43
25	SHERIDAN CENTRE BUS TERMINAL	21	22	5	5 Dixie (Southbound)	5	7	6	1	4:17:00 AM	12:44:00 AM	52
26	MATHESON BLVD east of HURONTARIO ST	22	23	5	5 Dixie (Southbound)	5	7	6	2	5:43:00 AM	12:16:00 AM	48
27	SOUTH COMMON CENTRE BUS TERMINAL	23	24	5	5 Dixie (Southbound)	5	7	6	З	8:28:00 AM	9:16:00 PM	43
28	ERIN MILLS STATION WEST	24	25	6	6 Credit Woodlands (Eastbound)	3	8	3	1	5:10:00 AM	1:40:00 AM	31
29	WOODBINE CENTRE BUS TERMINAL	25	26	6	6 Credit Woodlands (Eastbound)	3	8	3	2	5:41:00 AM	11:30:00 PM	30
30	TRELAWNY CIR at MOCKINGBIRD LANES	26	27	6	6 Credit Woodlands (Eastbound)	3	8	3	З	8:00:00 AM	8:32:00 PM	30
31	LISGAR GO STATION	27	28	6	6 Credit Woodlands (Westbound)	3	3	8	1	5:33:00 AM	1:09:00 AM	30
4	Terms definition Midland and Penetanguishe	ene Barrie	Bradford	Brampton Hami	lton St. Catharines YRT Mississauga	(+)					: ∢	

Developed Electric bus Feasibility/Design Model (Opportunity)


Developed Electric bus Feasibility/Design Model (Overnight)

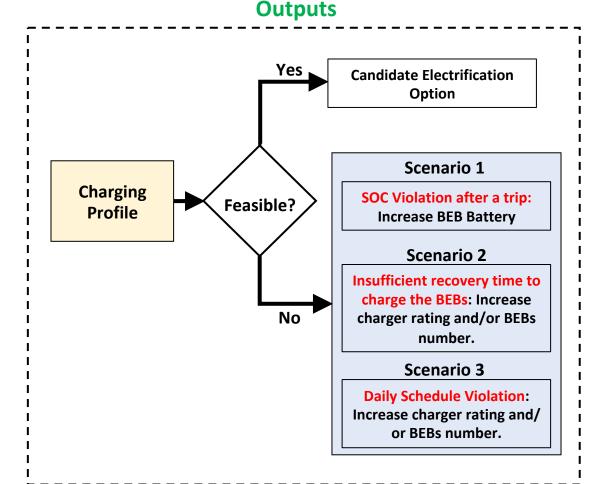
Developed Electric bus Feasibility/Design Model


Typical charging profile BEB:

1. <u>Opportunity Electrification Concept:</u>

- Scattered charging across the day
- High charging power magnitude
- Charge in few minutes

2. <u>Overnight Electrification Concept:</u>

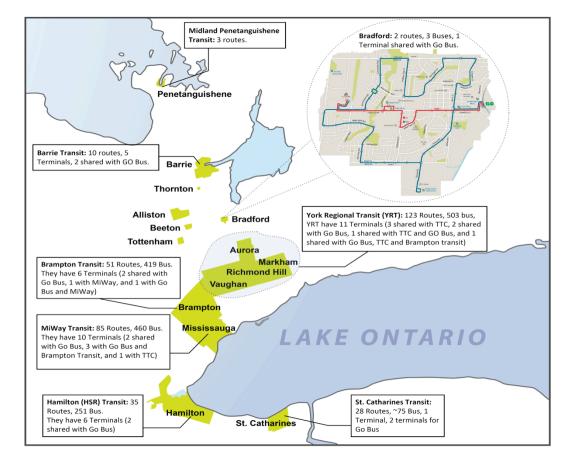


- Bulk charging at the end of the day
- Low charging power magnitude
- Charge in few hours

Developed Electric bus Feasibility/Design Model

Given Straints Check:

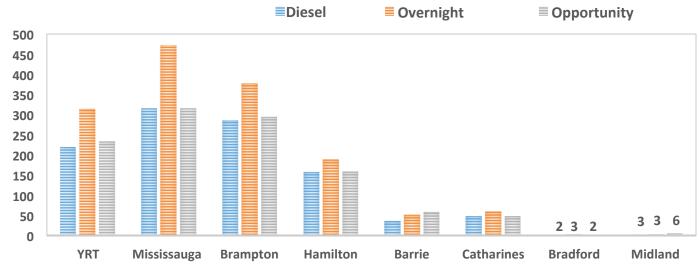
- 1. Battery is sufficient for the trip distance, else increase the battery size.
- 2. In opportunity charging, the chargers should provide sufficient energy during the recovery time, else increase the charger size and/or number of BEBs.
- 3. In overnight charging, BEBs charging sessions should ends before the next day scheduled trip, else increase the charger size and/or number of BEBs.

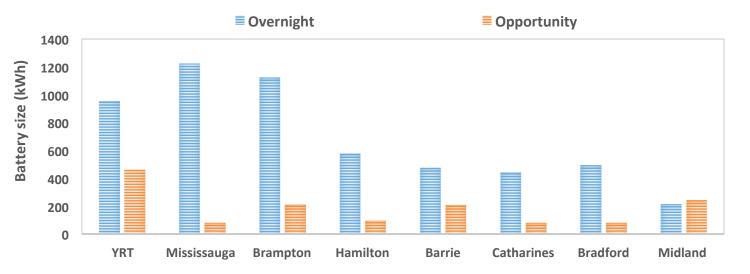

Developed Electric bus Feasibility/Design Model

Example for the feasibility check:

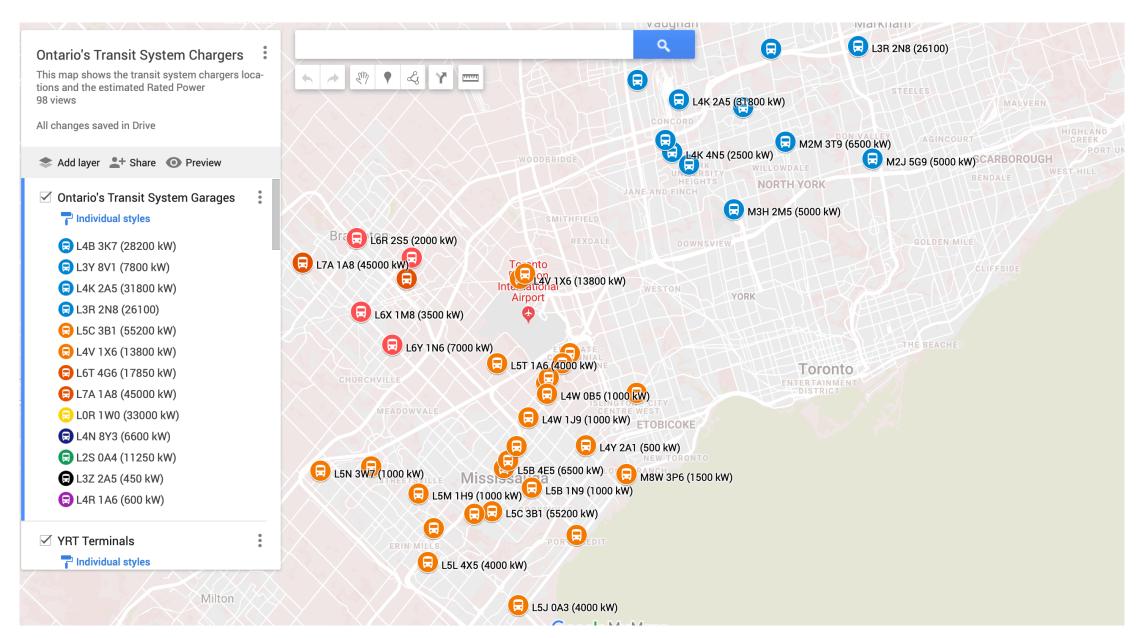
Evaluate the technical operation feasibility for BEBs

 (i.e., overnight and opportunity) to take over diesel
 buses for each bus fleet within Alectra's coverage area
 based on the specified options below:

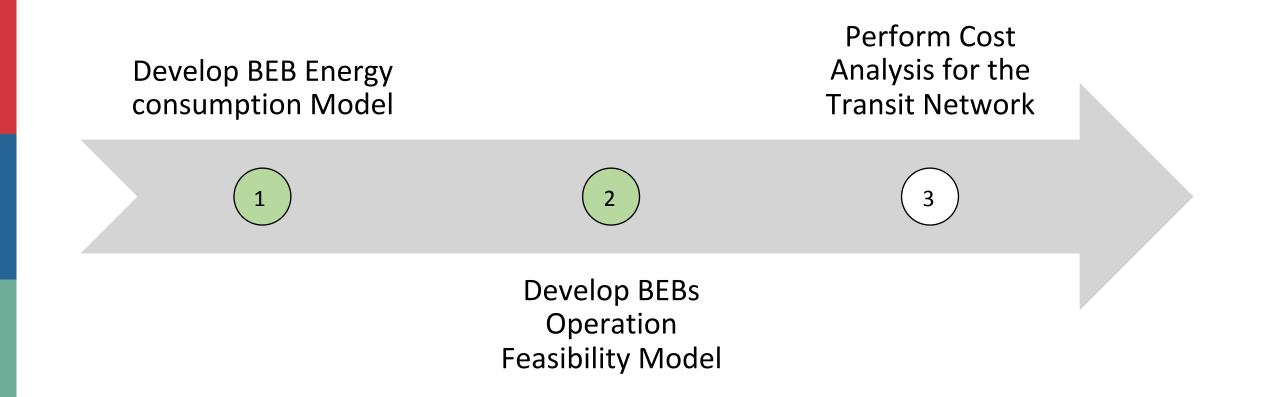

Bus specifications for different BEB configurations								
Variables	Opportunity	Overnight						
variables	Electric Bus	Electric Bus						
Manufacture	Proterra	BYD						
Model	Catalyst	40-Electric						
Length (ft.)	40	40						
Seating (#)	41	36						
Battery Capacity (kWh)	80	324						
Charging Power (KW)	500	200						
Charging Rate (kW/min)	8.33	3.33						

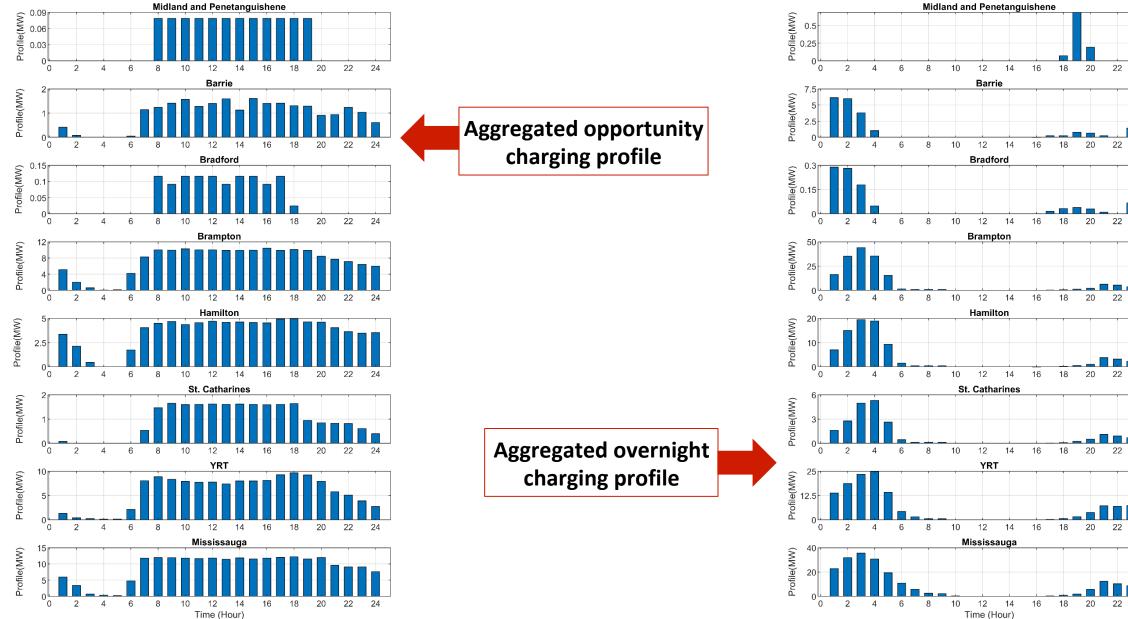


Bus fleets operation feasibility


Number of buses

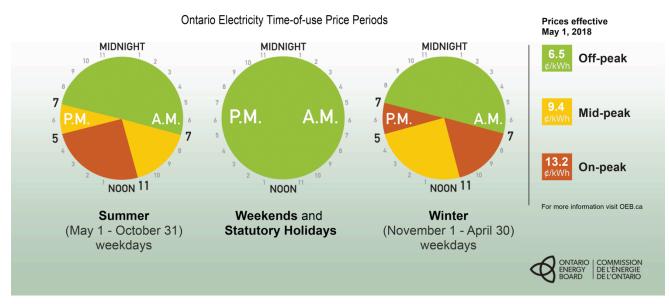
- Overnight and opportunity BEBs are capable of satisfying the bus fleet operation requirements. However, the <u>number of required BEBs may be</u> <u>higher than number of DBs in some routes</u>.
- Route characteristics (i.e., trip distance, number of daily trips, and recovery time) significantly affects the number of required BEBs
 - Recovery time and trip distance (kWh per trip) are the major factors which affect number of Opportunity BEBs.
 - Daily distance (trip distance × number of daily trips) is the main factor which affects number of Overnight EBs.





Customized Design for the chargers

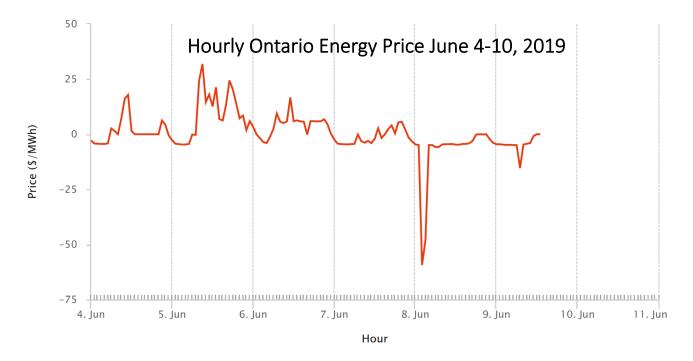
Planning Process of Electrified transit system



Load Metering:

□For billing purpose utilities classify the consumers into different rate classes:

1. Residential Class: Using a smart meter residential customers are metered and billed based on the kWh consumption. Where, the electricity rate is determined based <u>Time of Use (TOU) rates</u>, besides the electricity delivery and regulatory charges.


Time of Use electricity rates applied by the Ontario Energy Board

https://www.oeb.ca/rates-and-your-bill/electricity-rates/managing-costs-time-use-rates https://www.powerstream.ca/customers/rates-support-programs/residential-rates.html https://www.hydroone.com/rates-and-billing

Load Metering:

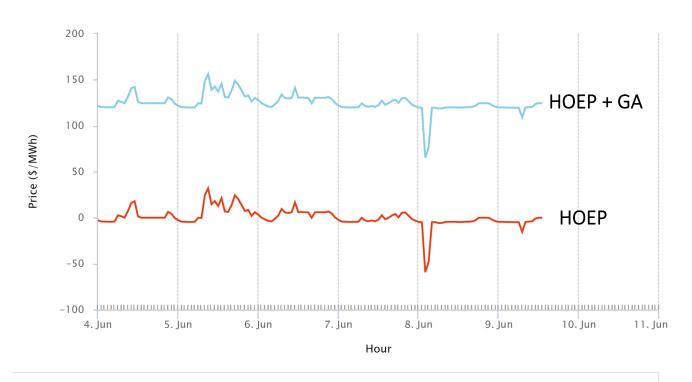
□For billing purpose utilities classify the consumers into different rate classes:

- 2. General Service (GS): also known as <u>business</u> account and is billed using the <u>Hourly Ontario Energy</u> <u>Price (HOEP)</u> and includes the following classifications:
 - a) GS < 50 kW (Low volume consumer)
 - b) GS > 50 kW
 - c) GS > 5000 kW (Large Use)

Load Metering:

□For billing purpose utilities classify the consumers into different rate classes:

2. General Service (GS): also includes **Delivery and Regulatory Charges** as shown in the table.


Delivery and Regulatory Charges for different consumer rate class issued by Alectra Utility in Ontario effective by January 2019

Rate Classification	non-residential consumers (GS> 50 kW)	non-residential consumers (GS> 5000 kW)				
Fixed Charge (\$/month)	146.46	6282.42				
Distribution Charge (\$/kW)	2.9028	-0.2810				
Transmission Network charge (\$/kW)	2.7391	3.1569				
Transmission Connection charge (\$/kW)	1.4431	1.3931				
Loss adjustment factor (\$/kWh)	3.69%	1.45%				
Wholesale Market Services (\$/kWh)	0.0	003				
Standard Supply Service Charge (\$/kWh)	003					
Capacity Based Recovery (\$/kWh)	kWh) 0.0004					
Rural and Remote Rate Protection	0.0005					

Load Metering:

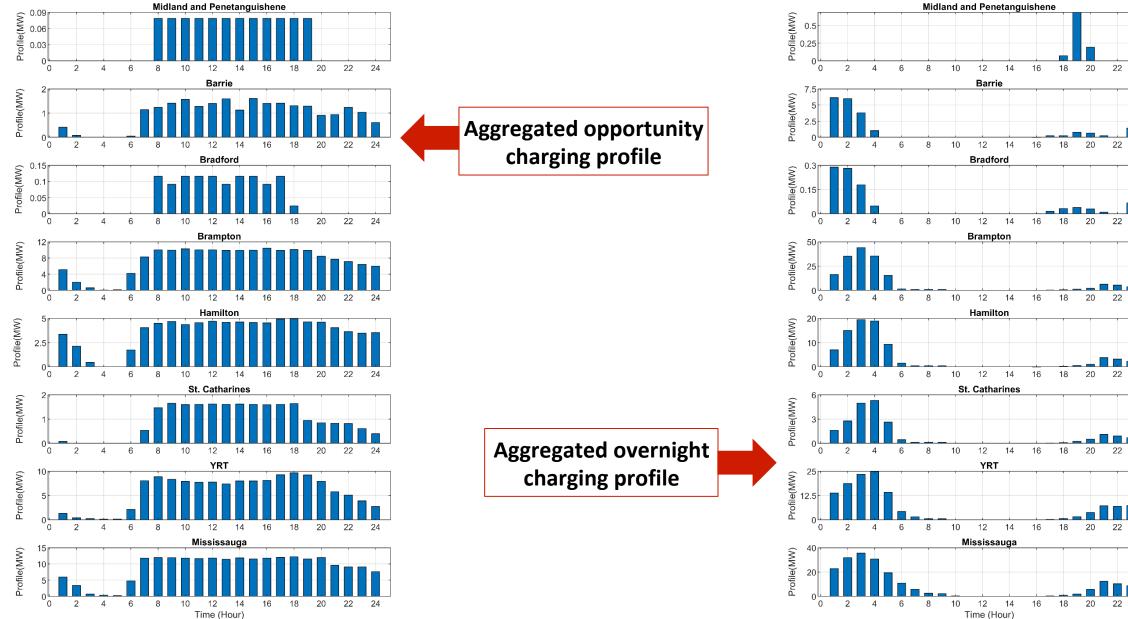
□For billing purpose utilities classify the consumers into different rate classes:

- 2. General Service (GS): in addition includes the **<u>Global Adjustment</u>** cost and is classified as:
- a) <u>Class A:</u> customers pay GA according to their contribution to the top five peaks in Ontario over the year.
- b) <u>Class B:</u> customers pay GA according to a monthly fixed rates announced by the IESO.

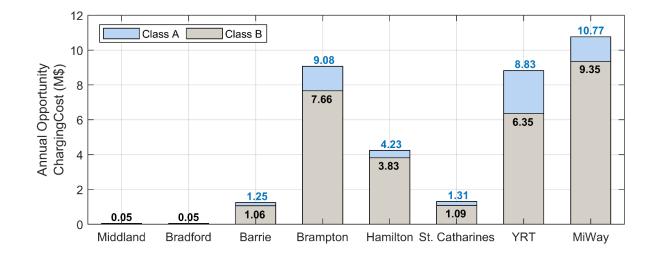
4-10 Jun

Load Metering:

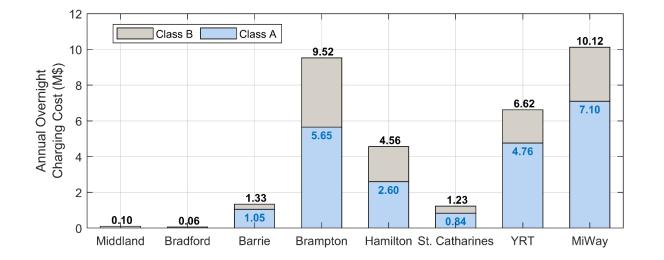
□For billing purpose utilities classify the consumers into different rate classes:


2. General Service (GS): in addition includes the **<u>Global Adjustment</u>** cost and is classified as:

2018 Historical GA prices for Class B in \$/MWh and the GA system-wide cost in M\$ for the calculation of Class A payment.												
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Monthly GA class B (\$/MWh)	67.36	81.67	94.81	99.59	107.93	118.96	77.37	74.90	85.84	120.59	98.55	74.04
Monthly GA system wide (M\$)	786.8	796.3	962.8	937.8	1001.1	1151.0	911.8	876.4	847.3	1135.3	936.4	853.2


Class B GA (\$) = Monthly GA class B × Monthly Consumption

Class A GA (\$) = Monthly GA System Wide × Contribution % to top five peaks


Historical top five peaks in Ontario in 2018								
Top five Ontario's Peak in 2018 (MW)	Hour Time	Date						
21998.881	17	June-12-17						
20984.125	18	July-19-17						
21811.609	17	September 25, 2017						
21665.003	17	September-26-17						
20885.139	18	January-05-18						

- Opportunity charging operation cost for electrified transit networks for Class A and Class B electricity market participant.
 - ✓ Class B is more economical for Opportunity charging operation

- Overnight charging operation cost for electrified transit networks for Class A and Class B electricity market participant.
 - ✓ Class A is more economical for Overnight charging operation.

Summary

Develop BEB Energy consumption Model

Develop BEBs Operation Feasibility Model Perform Cost Analysis for the Transit Network

3

 Determine the BEB consumption ADVISOR

✓ Develop an HVAC model to overcome ADVISOR drawbacks

 ✓ WEBST "Web-based application" is under development

- Logic based model is developed to create:
 - 1. Charging profile
 - 2. Validate the feasibility
 - 3. Design the BEBs battery and charger.
- Cost analysis for the studies transit network within Alectra's Coverage area is carried out.

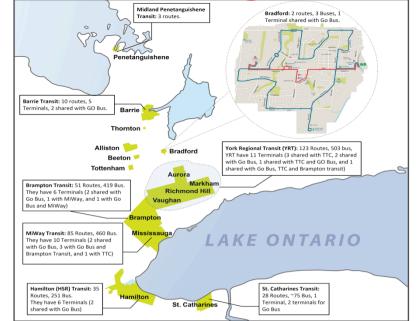
THANK YOU

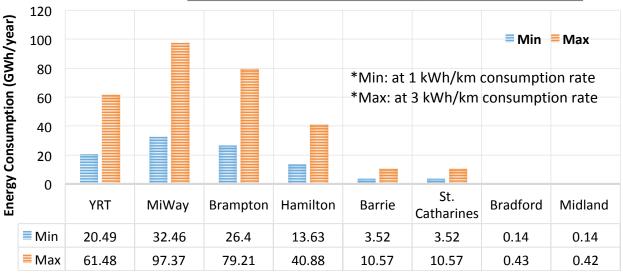
	Midland and Penetanguishene	Barrie	Bradford	Brampton	Hamilton	St. Catharines	YRT	Mississauga
Daily Consumption (MWh)	283	7521	290	54423	27362	7298	41996	65855
Covered Distance (1000 km)	142	3760	145	27211	13681	3649	20998	32928

 Table I: Total Daily consumption and covered distance by each electrified transit network.

Table 1: Transit Networks Operation cost and normalized indices for the opportunity charging scenario**

	Midland and Penetanguishene	Bradford	Barrie	Brampton	Hamilton	St. Catharines	YRT	Mississauga			
	Class A Opportunity										
Total GA Cost (\$)			\$ 879,027	\$ 6,409,943	\$ 2,919,442	\$ 889,233	\$ 6,331,893	\$ 7,471,469			
Total Annual (\$)			\$ 1,248,405	\$ 9,075,501	\$ 4,234,925	\$ 1,309,790	\$ 8,829,070	\$ 10,770,813			
\$/km Index			0.33	0.33	0.31	0.36	0.42	0.33			
\$/kWh Index			0.17	0.17	0.15	0.18	0.21	0.16			
			Class B C	Opportunity							
Total GA Cost (\$)	\$ 26,041	\$ 26,645	\$ 690,693	\$ 4,997,699	\$ 2,512,614	\$ 670,054	\$ 3,856,840	\$ 6,048,053			
Total Annual (\$)	\$ 45,825	\$ 48,537	\$ 1,060,072	\$ 7,663,257	\$ 3,828,096	\$ 1,090,610	\$ 6,354,018	\$ 9,347,397			
\$/km Index	0.32	0.33	0.28	0.28	0.28	0.30	0.30	0.28			
\$/kWh Index	0.16	0.17	0.14	0.14	0.14	0.15	0.15	0.14			


Table 2: Transit Networks Operation cost and normalized indices for the overnight charging scenario**


	Midland and Penetanguishene	Barrie	Bradford	Brampton	Hamilton	St. Catharines	YRT	Mississauga			
	Class A Overnight										
Total GA Cost (\$)			\$ 409,977	\$ 1,127,416	\$ 552,290	\$ 276,091	\$ 1,996,985	\$ 3,026,768			
Total Annual (\$)			\$ 1,051,921	\$ 5,652,542	\$ 2,600,223	\$ 837,638	\$ 4,761,618	\$ 7,103,462			
\$/km Index			0.28	0.21	0.19	0.23	0.23	0.22			
\$/kWh Index			0.14	0.10	0.10	0.11	0.11	0.11			
			Class E	3 Overnight							
Total GA Cost (\$)	\$ 26,041	\$ 26,645	\$ 690,693	\$ 4,997,699	\$ 2,512,614	\$ 670,054	\$ 3,856,840	\$ 6,048,053			
Total Annual (\$)	\$ 95,726	\$ 57 <i>,</i> 615	\$ 1,332,637	\$ 9,522,824	\$ 4,560,546	\$ 1,231,601	\$ 6,621,474	\$ 10,124,747			
\$/km Index	0.68	0.40	0.35	0.35	0.33	0.34	0.32	0.31			
\$/kWh Index	0.34	0.20	0.18	0.17	0.17	0.17	0.16	0.15			

**Green cells with bold green font represents the cheapest option for a given transit network.

Estimated Energy Consumption for Alectra Coverage Area

Transit network	# buses	# routes	D	Annual		
	# buses	# routes	M-F	Sat.	Sun.	Distance (km)
York Region Transit (YRT)	626ª	137	67.420	34.077	22.944	20.494
Mississauga	460	85	106.776	53.657	36.617	32.456
Brampton	419	51	85.684	43.859	35.506	26.405
Hamilton	251	35	43.280	26.472	19.171	13.626
Barrie	44	10	10.867	9.099	4.323	3.523
St. Catharines	75	29	11.317	6.697	4.463	3.523
Bradford	3	2	0.556	0.0	0.0	0.144
Midland and Penetanguishene	4	3	0.473	0.351	0.0	0.141
Total			326.4*10 ³ km	174.22*10 ³ km	123.023*10 ³ km	100.32*10 ⁶ km

(YE	300								
h/d	250								
(MWh/day)	200						≡ N	lin ≡Max	
	150						kWh/km co	-	
mpti	100					*Max: at 3	kWh/km co	onsumptio	n rate
consumption	50								
	0								
Energy	Ū	YRT	MiWay	Brampton	Hamilton	Barrie	St. Catharines	Bradford	Midland
	Min	67.42	106.78	85.68	43.28	10.87	11.32	0.56	0.47
	Max	202.26	320.33	257.05	129.84	32.6	33.95	1.67	1.42